
ECAlogic: Hardware-Parametric
Energy-Consumption Analysis of Algorithms ∗

Marc Schoolderman Jascha Neutelings Rody Kersten Marko van Eekelen †

Institute for Computing and Information Sciences, Radboud University Nijmegen
{mschool,jneutelings,rodykers,marko}@science.ru.nl

Abstract
While green software is a popular topic in computer science nowa-
days, the average programmer still has little options for analysis of
the energy-efficiency of his/her software. Analysis is mostly done
dynamically, for which a complex measurement set-up is needed.
Using a static analysis which predicts the energy-consumption,
would be more accessible and more cost-effective.

This paper presents ECALOGIC1, a tool that implements a static
analysis that can bound the energy consumption of algorithms. The
tool is parametric with respect to a set of hardware component
models. Its results are symbolic over the program parameters.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; C.0 [Computer Systems Organization General]: Modeling
of computer architecture

Keywords Energy-Consumption, Static Analysis, Resource Anal-
ysis, Green Software, Green Computation

1. Introduction
In the last decades, energy-efficiency has become an important
topic in computer science. Greenness of hardware has received
much attention. Research on green software has mostly been fo-
cused on providing guidelines and design patterns for program-
mers, as well as profiling of hardware for analysis of low-level soft-
ware. Estimation of the energy-consumption of algorithms is still a
challenging task for the average programmer, who does not have
access to a measurement set-up.

We present ECALOGIC, a tool for static energy-consumption
analysis. Using this tool in combination with a model of the
target hardware, a programmer can statically bound the energy-

∗ This work is part of the IOP GenCom GoGreen project, sponsored by the
Dutch Ministry of Economic Affairs, Agriculture and Innovation.
†Marko van Eekelen is also affiliated with the Faculty of Management,
Science and Technology, Open University of the Netherlands.
1 http://resourceanalysis.cs.ru.nl/energy/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FOAL ’14, April 22, 2014, Lugano, Switzerland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2798-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/2588548.2588553

consumption of his/her software design. The tool provides an upper
bound that is symbolic over the input parameters of the program.

1.1 Energy Consumption Analysis
ECALOGIC is an implementation of the static analysis presented
in [5] and [6]. This analysis takes a set of component models and
an algorithm that controls such component abstractions as input
and calculates an upper bound on the consumed time and energy. It
is based on a Hoare logic with derivation rules. As an example, we
show a simplified version of the if-rule, where Γ is a set of energy-
aware component states and t is the global time:

{Γ1; t1}e{Γ2; t2} {Γ2; t2}S1{Γ3; t3} {Γ2; t2}S2{Γ4; t4}
{Γ1; t1}if e then S1 else S2 end if{lub(Γ3,Γ4);max(t3, t4)}

The guard and both branches are analysed separately. Then, the
least upper bound of component states and the maximum of the
timing of both branches is taken as the result of the conditional.

The input algorithms for the analysis are written in a simple
“while”-type language. This language has a construction for ex-
plicitly calling component functions. Components are modelled at
the API-level. A component model typically offers several compo-
nent functions, each with an associated energy-footprint. As run-
ning example we take a wireless sensor node that takes measure-
ments and communicates these wirelessly. The hardware compo-
nents are a CPU, a sensor and a radio transceiver. The sensor might
e.g. offer a component function Sensor ::measure().

Two separate forms of energy consumption are identified: in-
cidental, where a call to a component function consumes energy
immediately, and time-dependent, where the component consumes
a certain amount of energy constantly depending on its state (e.g.
“stand-by”). A call to a component function may inflict an inciden-
tal energy-usage, as well as change the component state, thereby in-
fluencing time-dependent energy-usage. A component state is mod-
elled as a set of positive integers. There must be finitely many states
and the states must form a lattice, making it possible to calculate a
least upper bound over them. Also, the energy-usage of the com-
ponent must be monotonic with respect to the component states.
Hence, the lattice ordering must be such that greater states mean
higher energy consumption.

The static analysis is focused on energy-consumption and as-
sumes that several properties of the input algorithm are given, ei-
ther by the programmer of by a pre-analysis using other tools. All
while loops should be annotated by a symbolic upper bound on
the number of iterations (ergo, all algorithms terminate). Further-
more, when a program variable is used in such an upper bound or
a function-call, its value at that point in the program will influence
the analysis. As the results of the analysis are symbolic over the
input parameters of the program, at those program points an an-
notation is expected expressing the current value of the referenced
variables in terms of the input parameters.

http://resourceanalysis.cs.ru.nl/energy/

1.2 Related Work
To our knowledge, ECALOGIC is the first tool that offers static
energy consumption analysis for complete systems. Several tools
perform a static analysis of the energy-consumption of the CPU
based on per-instruction measurements, such as JOULETRACK [8]
and WATTCH [2]. Furthermore, tools exist for energy profiling of
software libraries, i.e. using dynamic analysis [4]. The tool that
is most similar to ours is SEPROF [10]. This advanced tool com-
bines dynamic profiling with static estimation of energy consump-
tion. One difference is that, while ECALOGIC is geared towards
complete systems, SEPROF only estimates the energy usage of
the CPU. Moreover, while SEPROF estimates energy-usage, ECA-
LOGIC gives bounds that are sound with respect to the hardware
model.

In [9], an abstraction of the resource behaviour of components is
presented, called Resource-Utilization Models (RUMs). Our com-
ponent models can be viewed as an instantiation of a RUM. RUMs
can be analysed, e.g., with the model checker Uppaal where our
static analysis method employs the Hoare logic from [5]. A pos-
sible future research direction for ECALOGIC is to find a way to
analyse also algorithms with RUMs as component models.

Finally, several generic resource consumption tools exist, such
as COSTA [1] and RAML [3]. The difference with ECALOGIC is
that these do not take a hardware model into account and are geared
towards incidental resource consumption, making them less fit for
energy-consumption analysis.

2. Tool Architecture
A schematic representation of ECALOGIC is as follows:

hardware

algorithm

ECM model

ECA program

analysis
time

energy

The algorithm and the hardware on which it will run must first
be modelled. To capture the functionality of the algorithm, we offer
the simple ECA programming language, described in Sect. 2.1.
Each hardware component is modelled in a similar language, ECM,
which is described in Sect. 2.2.

Component functions explicitly influence energy consumption.
Other language constructs, for instance the evaluation of an arith-
metic expression, also implicitly consume energy. This is modelled
in the special implicit component. This component is assumed
to be present in any system. It is modelled in ECM and therefore
under full user control.

2.1 Input Language
For describing algorithms, we use the simple programming lan-
guage ECA. A program is represented as a function with input pa-
rameters. The language is a simple “while”-type language, with the
usual control structures and function calls. It has two major restric-
tions:

• All while-loops are bounded in the number of iterations. This
upper bound must be specified explicitly and is assumed to be
sound. It can either be inferred by a third-party tool or specified
directly by the programmer.
• All variables are positive integers. There is no form of struc-

tured data. These can however be simulated by modelling them
as component functions, as we will see below.

A partial grammar of the language is shown in Fig.1. Continuing
with our running example of a wireless sensor node, a simple

〈program〉 ::= {〈comp-imp〉 〈sep〉} {〈fun-def 〉 〈sep〉}
〈comp-imp〉 ::= ‘import’ ‘component’ id {‘.’ id} [‘as’ id]
〈fun-def 〉 ::= ‘function’ id [‘(’ [id {‘,’ id}] ‘)’] 〈fun-body〉
〈fun-body〉 ::= ‘:=’ 〈expr〉
| 〈stat-list〉 ‘end’ ‘function’
| 〈empty〉

〈stat-list〉 ::= {〈statement〉 〈sep〉}
〈statement〉 ::= ‘skip’
| id ‘:=’ 〈expr〉
| 〈fun-call〉
| ‘if’ 〈expr〉 ‘then’ 〈stat-list〉 ‘else’ 〈stat-list〉 ‘end’ ‘if’
| ‘while’ 〈expr〉 ‘bound’ 〈expr〉 ‘do’ 〈stat-list〉 ‘end’ ‘while’
| ‘{’ 〈annot-elem〉 {‘,’ 〈annot-elem〉} ‘}’ [〈statement〉]

〈fun-call〉 ::= [id ‘::’] id ‘(’ [〈expr〉 {‘,’ 〈expr〉}] ‘)’
〈annot-elem〉 ::= id ‘<-’ 〈expr〉
〈expr〉 ::= 〈expr〉 〈bin-op〉 〈expr〉
| id
| 〈fun-call〉
| ‘(’ 〈expr〉 ‘)’

〈bin-op〉 ::= ‘or’|‘and’|‘=’|‘<>’|‘>’|‘<’|‘>=’|‘<=’|‘+’|‘-’|‘*’|‘/’|‘^’
〈sep〉 ::= ‘;’ | end-of-line

Figure 1. Partial grammar of the input language ECA.

program that switches the radio on, takes N measurements and
transmits these, looks as follows:

f u n c t i o n alwaysOn (N)
Radio : : on ()
wh i l e N > 0 bound N do

Value := Senso r : : measure ()
Radio : : queue (Value)
Radio : : send ()
N := N−1

end wh i l e
Radio : : o f f ()

end f unc t i o n

Here the parameter N acts as an upper bound on the number of
iterations of the while loop. It is allowed to use any expression as an
upper bound, as long as it can be evaluated in terms of the parame-
ters of a function. In many cases this can be done directly, as above.
If, however, the upper bound of a loop references variables whose
values are only available at run time, an annotation with a Hoare-
style precondition is required to relate each of those variables to the
parameters. An example of this is given in Section 3.

2.2 Component Models
Hardware components models are defined by 1. a (possibly empty)
set of component states, 2. a function phi which maps component
states to power draw, and 3. a set of component functions. A simple
model for a radio looks as follows:

component Radio (a c t i v e : 0 . . 1)
i n i t i a l a c t i v e := 0

component f un c t i o n on uses 400 t ime 400 energy
a c t i v e := 1

end f unc t i o n

component f un c t i o n o f f uses 200 t ime 200 energy
a c t i v e := 0

end f unc t i o n

component f un c t i o n queue (X) uses 30 t ime 30 energy
component f un c t i o n send uses 100 t ime 100 energy

f un c t i o n ph i := 2 + 200 ∗ a c t i v e
end component

In this example, the radio has two states: off (0) or on (1). There
are component functions to turn the radio on/off, queue a measure-

〈component〉 ::= {〈class-imp〉 〈sep〉} ‘component’ id [‘(’ [〈var-def 〉
{‘,’ 〈var-def 〉}] ‘)’] {〈member〉 〈sep〉} ‘end’ ‘component’

〈class-imp〉 ::= ‘import’ ‘class’ id {‘.’ id} [‘as’ id]
〈var-def 〉 ::= id ‘:’ numeral ‘..’ numeral
〈member〉 ::= ‘initial’ id ‘:=’ numeral
| 〈fun-def 〉
| 〈comp-fun-def 〉

〈comp-fun-def 〉 ::= ‘component’ ‘function’ id [‘(’ [id {‘,’ id}] ‘)’]
[〈uses-clause〉] 〈fun-body〉

〈uses-clause〉 ::= ‘uses’ numeral ‘energy’ [numeral ‘time’]
| ‘uses’ numeral ‘time’ [numeral ‘energy’]

Figure 2. Grammar of the component modelling language ECM.

ment for sending and for transmitting the queue. The function on
has an incidental energy usage of 30 and changes the state of the
component to active. The function phi gives the energy consump-
tion per time-unit, depending on the state of the radio. Note that
this is where the timing analysis is needed.

An important constraint on the phi function is monotonicity
with respect to the ordering of the states: a higher state implies
a higher energy usage. ECALOGIC checks whether this constraint
holds. Apart from that, component functions have the same expres-
sive power as the ECA language. Hence, more detailed models can
easily be constructed.

3. Tool Application
To use the tool, the target platform must first be modelled. This
is a complex step, as building a precise model requires measure-
ments of the actual energy consumption. Depending on the goals
of the user, educated guessing might suffice when modelling, or
a standard ECM model (e.g. for the CPU) taken from a library of
component models might be used. If precise results are required,
accurate modelling is paramount. If the user wants to compare im-
plementation variants, a less precise modelling will often suffice.

A typical use case is the comparison of different implementa-
tions of an algorithm. In the case of a wireless sensor node, a strat-
egy to conserve energy is to send data packets in batches of size B ,
only turning the radio on right before sending.

f u n c t i o n b u f f e r i n g (N , B)
wh i l e N > 0 bound N/B do

K := B
{ K <- B }
wh i l e K > 0 and N > 0 bound K do

Value := Senso r : : measure ()
Radio : : queue (Value)
K := K − 1
N := N − 1

end wh i l e
Radio : : on ()
Radio : : send ()
Radio : : o f f ()

end wh i l e
end f un c t i o n

Note that the annotation { K <- B } is necessary to express that the
symbolic value of the variable K in terms of the function parameters
is B . ECALOGIC issues a diagnostic whenever the symbolic value
of a loop bound or function argument cannot be determined.

Using a simple implicit component and sensor model (as in [6]),
we can now compare the two implementations:

implementation time energy
alwaysOn(N) 600 + 195 ·N 83600 + 40200 ·N
buffering(N ,B)

(
130 + 740

B

)
·N

(
1070 + 105640

B

)
·N

These results also provide information on appropriate values for
the block size B . If we are interested in a constantly functioning

sensor node, we should consider very large N . It is then clear that
the buffering implementation is more efficient for B ≥ 3.

4. Conclusion and Future Work
We have presented ECALOGIC, a tool for static energy analysis of
software, and demonstrated its use by modelling a wireless sensor
node. Using this tool, we can statically derive a symbolic upper
bound on energy consumption to analyse and compare different
algorithms on different hardware configurations. In the Software
Analysis course at Radboud University Nijmegen students have
used ECALOGIC for exercises, successfully modelling various al-
gorithms and hardware components.

In the future we aim to further improve the tool as follows:

• Since ECALOGIC currently only supports the ECA language,
the software to be analysed must be expressed in this language.
When analysing existing software, this is restrictive. We are
working towards supporting a well-behaved subset of C.
• We want to increase the interoperability with other analysis

tools such as RESANA [7] for deriving loop bounds and a
CEGAR-based tool [9] for deriving component models.
• To increase the practical applicability, we will start an open li-

brary where users can submit ECM models for hardware com-
ponents. Users with access to physical measurement tools could
take a model from the library and validate it.

In this way, ECALOGIC contributes to the development of a
tool-supported design methodology achieving in a cost-effective
way guaranteed bounds on the energy consumption of IT-systems.

Acknowledgments
We would like to thank Dorus Peelen for his valuable work on the
ECALOGIC web-interface.

References
[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA:

Design and Implementation of a Cost and Termination Analyzer for
Java Bytecode. In FMCO’07, volume 5382 of LNCS, pages 113–133.
Springer, 2008.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. SIGARCH
Comput. Archit. News, 28(2):83–94, May 2000.

[3] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized
resource analysis. In POPL’11, pages 357–370. ACM, 2011.

[4] A. Kansal and F. Zhao. Fine-grained energy profiling for power-aware
application design. SIGMETRICS Perform. Eval. Rev., 36(2):26–31,
Aug. 2008.

[5] R. Kersten, P. Parisen Toldin, B. van Gastel, and M. van Eekelen. A
Hoare logic for energy consumption analysis. In FOPARA’13, 2014.
Under submission.

[6] P. Parisen Toldin, R. Kersten, B. van Gastel, and M. van Eekelen.
Soundness Proof for a Hoare Logic for Energy Consumption Analysis.
Technical Report ICIS–R13009, Radboud University Nijmegen, 2013.

[7] O. Shkaravska, R. Kersten, and M. Van Eekelen. Test-based inference
of polynomial loop-bound functions. In PPPJ’10, pages 99–108.
ACM, 2010.

[8] A. Sinha and A. P. Chandrakasan. JouleTrack: A web based tool for
software energy profiling. In DAC ’01, pages 220–225. ACM, 2001.

[9] S. te Brinke, S. Malakuti, C. M. Bockisch, L. M. J. Bergmans,
M. Akşit, and S. Katz. A tool-supported approach for modular de-
sign of energy-aware software. In SAC’14. ACM, March 2014.

[10] S.-L. Tsao and J. J. Chen. SEProf: A high-level software energy
profiling tool for an embedded processor enabling power management
functions. Journal of Systems and Software, 85(8):1757 – 1769, 2012.

	Introduction
	Energy Consumption Analysis
	Related Work

	Tool Architecture
	Input Language
	Component Models

	Tool Application
	Conclusion and Future Work

