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Chapter 1

Introduction

This handout describes the material for lectures 5, 6 and 7 of the Com-
puter Science Master course System Validation (191140122). It contains the
following topics:

• The JML Specification Language

• Runtime-checking of a program

• Abstract specifications

• Static checking of a program

Purpose of the System Validation course is to make you become ac-
quainted with different formal tools and techniques that can help one to
improve the quality of software applications.

In the first part of the course, different model checking approaches have
been discussed. In particular, symbolic program execution has been used to
check safety properties of a program. In addition, it has been discussed how
an abstract model of the system can be developed. For such abstract, finite
state models, both safety and liveness properties can be verified. To specify
these properties, temporal logic has been used.

In the second part of the course, we will be more software-oriented.
Instead of making an abstract model of the program, we will specify and
verify the code directly. As a specification language, we use JML, the Java
Modeling Language. During the three lectures the following topics will be
discussed:

• What sort of specifications can be written using JML?
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2 CHAPTER 1. INTRODUCTION

• How can you validate a JML specification during execution, i.e., at
run-time?

• How can you validate a JML specification statically, without running
the code?

Goal of the handout is to give you support to follow the lectures, and
to provide you something to fall back upon to study some particular topic
again. However, this handout is by no means complete. Therefore, on
BlackBoard you can find additional references to more in-depth descrip-
tions of the different topics. We also refer the JML reference manual (see
http://jmlspecs.org [32]), where for many of the JML language con-
structs a detailed description of its intended meaning is given.

This is the first year that this handout is used, and any feedback on it
will be highly appreciated.



Chapter 2

Crash Course on JML

2.1 History and Background

JML, the Java Modeling Language [31], is a Design by Contract specifi-
cation language for Java programs. The term Design by Contract (DbC)
was introduced by Bertrand Meyer in 1986 for the Eiffel programming lan-
guage [39]. DbC is a programming methodology where the behaviour of
program components is described as a so-called contract. The user of a
component only has to study the component’s contract, and this should
tell him exactly what he can expect from the component. The imple-
menter of the component is free to choose any implementation, as long
as it respects the component’s contract. See also this Wikipedia page:
http://en.wikipedia.org/wiki/Design_by_contract for a comprehen-
sive description of the ideas behind Design by Contract.

Desigy By Contract is a popular methodology for object-oriented lan-
guages. In this case, the components are the program’s classes. Contracts
naturally correspond with the object-oriented paradigm to hide (or encap-
sulate) the internal state of an object (a class instance). Basically, a class
contract describes for each method under what conditions it may be called,
and what it guarantees about its result. In addition, a class contract may
also describe general consistency properties of the class, i.e., properties that
the user always can rely upon.

Method contracts are also convenient to express the idea of behavioural
subtyping [36]. In an object-oriented program, any subclass may be used
wherever a superclass is expected. Behavioural subtyping expresses the idea
that a subclass thus should behave as the superclass (at least, when it is used
in a superclass context). Contracts can be used to ensure that a subclass is

3
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4 CHAPTER 2. CRASH COURSE ON JML

indeed a behavioural subtype of a superclass. In particular, every method in
the subclass should respect the method’s contract of the superclass. And in
addition, all the consistency properties of the superclass are inherited by the
subclass. Notice that this same approach applies for interfaces and classes.
An interface can be specified with its desired behaviour. Every class that
implements this interface should be a behavioural subtype of the interface,
i.e., it should satisfy all the specifications of the interface.

As mentioned above, the use of Design By Contract for object-oriented
languages dates back to 1986, where Bertrand Meyer introduced it for the
language Eiffel [39]. The Eiffel compiler has a special option that can be
used to check validity of the contract at run-time. Subsequently, the same
ideas where applied to reason about other programming languages (including
Modula III, C++, and Smalltalk, that were all handled in the Larch project,
see http://www.sds.lcs.mit.edu/spd/larch/).

With the growing popularity of Java, several people decided to develop
a specification language for Java. Gary Leavens – and his students at Iowa
State University – used their experience from the Larch project, and started
work on JML. JML is short for Java Modeling Language (the similarity to
the name UML is intentional). They proposed a specification language, and
simultaneously developed the JML run-time assertion checker, that could
be used to validate the contracts at run-time.

At more or less the same time, Rustan Leino – and his team, then at the
DEC/Compaq research centre – started working on a tool to reason statically
about Java programs. Rustan Leino also had worked on specification of
Modula III programs before. For their static verification tool, ESC/Java [34]
they developed a specification language that was more or less a subset of
the JML language that Gary Leavens proposed. But instead of developing a
technique that would validate the contracts during execution, they developed
a static verifier that could check whether all possible program executions
respected the class’s contract.

At the same time, several projects existed that targeted tool-supported
verification of Java programs (for example the LOOP project [10], the Key
project [9], and the Krakatoa project [38]). Quickly, people involved in these
different projects more or less agreed that JML was the most appropriate as
property specification language for their tools. And thus, as a result, JML
became the de facto standard contract specification language for Java.

Ever since then, the community has worked on adopting a single JML
language, with a single semantics – and this is still an on-going process.
Over the years, JML has become a very large language, containing many
different, potentially useful, specification constructs. However, because of

http://www.sds.lcs.mit.edu/spd/larch/


2.2. JML METHOD CONTRACTS 5

the language being so large, not for all constructs the semantics is actually
understood and agreed upon, and moreover all tools that support JML in
fact only support a subset of it. To solve this, a core subset of JML has been
defined that contains the most common constructs of JML, for which the
semantics is well-understood. Tools that support JML are expected to at
least support this JML-core (and they are free to support any other language
constructs). This core is defined in Section 2.9.1 of the JML Reference
Manual [32].

During the System Validation course, we will mainly restrict ourselves
to the language constructs that are in this core, as this already expressive
enough to write non-trivial specifications about Java programs. However,
occassionally, we will also use features from more advanced JML levels.

2.2 JML Method Contracts

Ingredients of a Method Contract So, what is exactly a method con-
tract? A method contract consists of two things: it describes what is ex-
pected from the code that calls the method, and it provides guarantees about
what the method will actually do.

The expectations on the caller are called the precondition of the method.
Typically, these will be conditions on the method’s parameters, e.g., the ar-
gument should be a non-null pointer, but the precondition can also describe
that the method can only be called when the object is in a particular state.
In JML, every precondition expression is preceded by the keyword requires.

The guarantees provided by the method are called the postcondition
of the method. They describe how the object’s state is changed by the
method, or what the expected return value of the method is. A method
only guarantees its postcondition to hold whenever it is called in a state that
respects the precondition. If it is called in a state that does not satisfy the
precondition, then no guarantee is made at all. In JML, every postcondition
expression is preceded by the keyword ensures.

JML specifications are written as special comments in the Java code,
starting with /*@ or //@. The @ sign allows the JML parser to recognise
that the comment contains a JML specification. The preconditions and
postconditions are basically just Java expressions (of Boolean type). This
is done on purpose: if the specifications are written in a language that the
programmer is already familiar with, they are easier for him to write and to
read.
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package chapter2;

public interface Student {

public static final int bachelor = 0;

public static final int master = 1;

/*@ pure */ public String getName();

//@ ensures \result == bachelor || \result == master;

/*@ pure */ public int getStatus();

//@ ensures \result >= 0;

/*@ pure */ public int getCredits();

//@ ensures getName().equals(n);

public void setName(String n);

/*@ requires c >= 0;

ensures getCredits() == \old(getCredits()) + c;

*/

public void addCredits(int c);

/*@ requires getCredits() >= 180;

requires getStatus() == bachelor;

ensures getCredits() == \old(getCredits());

ensures getStatus() == master;

*/

public void changeStatus();

}

Figure 2.1: First JML example specification Student
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Example Figure 2.1 contains an example of a basic JML specification.
It contains contracts for the methods in an interface Student, modeling a
typical UT student. We discuss the different aspects of this example in full
detail.

• For method getName, we specify that it is a pure method, i.e., it may
not have any (visible) side effects. Only pure methods may be used in
specification expressions, because these should not have side effects.

• Method getStatus is also pure. In addition, we specify that its results
may only be one of two values: bachelor or master. To denote the
return value of the method, the reserved JML-keyword \result is
used.

• For method getCredits we also specify that it is pure, and in addition
we specify that its return value must be non-negative; a student thus
never can have a negative amount of credits.

• Method setName is non-pure, i.e., it may have side effects. Its postcon-
dition is expressed in terms of the pure methods getName and equals:
it ensures that after termination the result of getName is equal to the
parameter n.

• Method addCredits’s precondition describes a condition on the method
parameters, namely that only a positive number of credits can be
added. The postcondition specifies how the credits change. Again,
this postcondition is expressed in terms of a pure method, namely
getCredits. Notice the use of the keyword \old. An expression
\old(E) in the postcondition actually denotes the value of expres-
sion of E in the pre-state of the method. Thus the postcondition of
addCredits expresses that the number of credits only increases: af-
ter evaluation of the method, the value of getCredits is equal to the
old value of getCredits, i.e., before the method was called, plus the
parameter c.

• Method changeStatus’s precondition specifies that this method only
may be called when the student is in a particular state, namely he
has obtained a sufficient amount of credits to pass from the Bach-
elor status to the Master status. Moreover, the method may only
be called when the student is still having a Bachelor status. The
postcondition expresses that the number of credits is not changed by
this operation, but the status is. Notice that the two pre-conditions



8 CHAPTER 2. CRASH COURSE ON JML

and the two-postconditions of changeStatus are written as separate
requires and ensures clauses, respectively. Implicitly, these are as-
sumed to be joined by conjunction, thus the specification is equivalent
to the following specification:

/*@ requires getCredits() >= 180 &

getStatus() == bachelor;

ensures getCredits() == \old(getCredits()) &

getStatus() == master;

*/

public void changeStatus();

Specifications and implementations Notice that the method specifi-
cations are written independently of possible implementations. Classes that
implement this interface may choose different implementations, as long as it
respects the specification. In the next chapters, we will see different imple-
mentations. One obvious implementation is using a field credits that keeps
track of the number of credits earned by the student. However, an alterna-
tive implementation is to keep track of a list of courses (denoted by credits)
and to compute the total number of credits as the sum of the credits of the
individual courses. Later, in Section 4, we will see how this implementation
can be shown to respect the specification of Student.

Method specifications do not always have to specify the exact behaviour
of a method; they give minimal requirements that the implementation should
respect. Considering the specification in Figure 2.1 again, the method spec-
ification for changeStatus prescribes that the credits may not be changed
by this method. However, method addCredits is free to update the status
of the student. So for example, an implementation that silently updates the
status from Bachelor to Master whenever appropriate is according to the
specification.

/*@ requires c >= 0;

ensures getCredits() == \old(getCredits()) + c;

*/

public void addCredits(int c) {

credits = credits + c;

if (credits >= 180) {status = master};

}

Notice also that both addCredits and changeStatus would be free to
change the name of the student, according to the specification, even though
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we would typically not expect this to happen. A way to avoid this, is
to add explicitly conditions getName().equals(\old(getName())) to all
postconditions. Later, in Chapter 5, we will see specification constructs
that can be used to explicitly disallow these unwanted changes in a more
convenient way.

Default specifications You might have wondered why not all specifica-
tions in Student have a pre- and a postcondition. Implicitly though, they
have. For every specification clause, there is a default. For pre- and post-
conditions this is the predicate true, i.e., no constraints are placed on the
caller of the method, or on the method’s implementation.

Thus for example the specification of method getStatus actually is the
following:

/*@ requires true;

ensures status == bachelor || status == master;

*/

public int getStatus() {

return status;

}

However, there is one exception to this. In JML all reference values
are implicitly assumed to be non-null, except when explicitly annotated
otherwise (using the keyword nullable). This means that the methods
getName and setName have implicit pre- and postconditions about the non-
nullity of the parameter and the result. Explicitly, their specifications are
as follows:

//@ ensures \result != null;

/*@ pure */ public String getName();

/*@ requires n != null;

ensures getName().equals(n);

*/

public void setName(String n);

Specification expressions Above, we have already seen that standard
Java expressions can be used as predicates in the specifications. These
expressions have to be side effect-free, thus for example assignments are not
allowed. As also mentioned above, these predicates may contain method
calls to pure methods.
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In addition, JML defines several specification-specific constructs. The
use of the \result and \old keywords have already been demonstrated
in Figure 2.1, and the official language specification contains a few more
of these. Besides the standard logical operators, such as conjunction &,
disjunction | and negation !, also extra logical operators are allowed in
JML specifications, e.g., implication ==>, and logical equivalence <==>. Also
the standard quantifiers ∀ and ∃ are allowed in JML specifications, using
keywords \forall and \exists. Using these, we can specify for example
that an array argument should be sorted.

//@ requires (\forall int i, j;

0 <= i & i < j & j < a.length;

a[i] <= a[j]);

public ... manipulateArray(int [] a) {...

The first argument is the declaration of the variable over which the
quantification ranges. The optional second argument defines the range of the
values for this variable, and the third argument is the actually universally
quantified predicate. Note that an alternative way to phrase this is the
following:

//@ requires (\forall int i, j;

0 <= i & i < j & i < a.length ==>

a[i] <= a[j]);

public ... manipulateArray(int [] a) {...

The official JML syntax also allows other quantified expressions, such as
\sum and \num_of, but unfortunately most tools do not support these yet.

A Note on Purity Above, we have said that a method should be pure if
it is to be used in a method specification, and purity was defined as having
no visible side effects. No visible side effects means that the state that was
allocated before the method call may not be changed. Thus, this does not
exclude that a method creates a new object and initialises that. In fact,
even changing a location and then restoring it to its old value before the
method is finished technically speaking does not make a method non-pure.

To complicate matters even further, some methods exist that are tech-
nically speaking not pure, but from a specification point-of-view may be
considered to be so. Consider for an example the function that computes a
hashcode. The first time this function is called on an object, a field of the
object will be written, so that the next calls can be evaluated by looking up
this field. Because of this, different variations of purity and observational
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purity exist in the literature, see e.g., [5, 19, 18] for more information. For
the scope of this course, it is sufficient to define purity simply as not having
any side effects.

Behaviours An important question is when a method specification is ac-
tually verified, and in particular if a method does not terminate, does it
then satisfy its specification?

The specifications as we have seen here are so-called lightweight spec-
ifications, and it specifies a partial correctness condition. If method m is
specified as follows:

/*@ requires P;

ensures Q;

*/

public ... m(...) { ...

this means the following: if method m is executed in a pre-state where P

holds, and if execution of method m from this pre-state terminates, then in
the post-state the postcondition Q holds.

Thus, if method m never terminates, it vacuously respects any lightweight
specification.

If one explicitly wishes to specify that a method has to terminate, this
can be done by adding a so-called diverges clause. A diverges clauses
specifies under which conditions a method may not terminate. If no diverges
clause is specified, this is assumed to be not_specified for a lightweight
specification.

Consider the following specification:

/*@ requires P;

ensures Q;

diverges false;

*/

public ... m(...) { ...

This specifies that method m has to terminate - it only may diverge if
false holds, which is never the case. Notice however that to express that
a method must always terminate, JML provides more convenient ways to
express this, as discussed shortly below. Nevertheless, diverges clauses can
be useful, in particular if one wishes to expresses that for certain parameters
a method might not terminate:

/*@ requires P;

ensures Q;
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diverges x < 0;

*/

public ... m(int x) { ...

To express directly that a method must terminate, JML also provides
heavyweight specifications. These are preceded by a keyword ...behavior.
Standard behavior specifications, preceded by the keyword behavior also
specify partial correctness specifications, but their default diverges clause is
false. Thus, unless specified explicitly otherwise, a behavior specification
specifies that a method must terminate. However, this does not exclude
that a method may terminate because of an exception. If we also want to
exclude this case, then a normal_behavior specification is to be used: this
states that method execution has to terminate in a normal state, and in the
post-state the postcondition has to hold1.

Thus, to summarise, consider the following specifications:

/*@ requires P1;

ensures Q1;

*/

public ... m1(...) { ...

}

/*@ behavior

requires P2;

ensures Q2;

*/

public ... m2(...) { ...

}

/*@ normal_behavior

requires P3;

ensures Q3;

*/

public ... m3(...) { ...

}

these specifications state the following. If the method mi (for i = 1, 2, 3) is
executed in a pre-state where precondition Pi holds, then:

1A method is said to terminate normally if either it reached the end of its body, in a
normal state, or it terminated because of a return instruction.
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• m1 may not terminate, and if m1 terminates, then postcondition Q1

holds;

• m2 has to terminate, either normally or with an exception, and if m2

terminates normally, then postcondition Q2 holds; and

• m3 has to terminate normally, and in the post-state postcondition Q3

has to hold.

Specifications for constructors Constructors can be considered as spe-
cial methods. In the pre-state of a constructor, the object does not yet
exist. Thus a precondition of a constructor can only put constraints on the
constructor parameters, it cannot put require anything about the internal
state of the object – as the object does not exist yet when the constructor is
called. However, the postcondition of the constructor can specify constraints
on the state of the object. Typically, it will relate the object state to the
constructor’s parameters.

Suppose we have a class CStudent, implementing the Student interface.
It could have the following constructor:

/*@ requires c >= 0;

ensures getCredits() == c;

ensures getStatus() == bachelor;

ensures getName() = n;

*/

CStudent (int c, String n) {

credits = c;

name = n;

status = bachelor;

}

Thus, to repeat, it would be incorrect to specify e.g., requires getCredits()

>= 0; or requires getStatus() == bachelor – these specifications are
meaningless at the moment that the constructor is invoked.

Defensive versus offensive method implementations A last impor-
tant point about method contracts is that they can be used to avoid de-
fensive programming. Consider the specification of method addCredits in
Figure 2.1.

This method assumes that its argument is non-negative, and otherwise
it is not going to function directly. When one uses a defensive programming
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style, then one would first test the value of the argument and throw an
exception if this was negative. This clutters up the code, and in many cases
it is not necessary. Instead, using specifications, one can use an “offensive”
coding style. The specification states what the method requires from its
caller. It only guarantees the function correctly the caller also fulfills its
part of the contract. When validating the application, one checks that every
call of this method is indeed within the bounds of its specification, and thus
the explicit test in the code is not necessary. Thus, making good use of
specifications can avoid adding many parameter checks in the code. Such
checks are only necessary when the parameters cannot be controlled – for
example, because they are given via an external user.

2.3 JML Class Specifications

Consider again the specification of Student in Figure 2.1. If we look care-
fully at the specifications and the description that we give about the stu-
dent’s credits, we notice that actually we implicitly assume some properties
about the value of getCredits that hold throughout. For example, we
wrote above:

“a student thus never can have a negative amount of credits.”

and also

“the number of credits only increases”

But if we would like to make explicit that we assume that these properties
always hold, we would have to add this to all the specifications in Student,
and thus in particular also to all methods that do not relate at all to the
number of credits. Thus for example, we would get the following specifica-
tion:

/*@ requires getCredits() >= 0;

ensures \result == bachelor || \result == master;

ensures getCredits() >= 0;

*/

/*@ pure */ public int getStatus();

Clearly, this is not desired, because specifications would get very large, and
besides describing the intended behaviour of that particular method, they
also describe properties over the lifetime of the object.

Therefore, JML provides also class-level specifications, such as invari-
ants, constraints and initially clauses. These specify properties over the
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internal state of an object, and how the state can evolve during the object’s
lifetime.

Invariants An object invariant2 is a predicate over the object state that
holds in all visible states of an object. A visible state of an object is de-
fined to be any state in which a method call to the object either starts or
terminates. Thus, an invariant I is implicitly added as a precondition and a
postcondition to every method in the class. In addition, also the poststates
of the constructor are visible states, thus any constructor has to ensure that
the invariant is established.

Figure 2.2 shows three possible invariants that can be added to interface
Student. These specify that credits are never non-negative; a student’s
status is always either bachelor or master, and nothing else; and if a student’s
status is master, he or she has earned more than 180 credits.

Of course, instead of specifying invariants, one can add these specifica-
tions to all pre- and postconditions explicitly. However, this means that
if you add a method to a class, you have to remember to add these pre-
and postconditions yourself. Moreover, invariants are also inherited by sub-
classes (and by implementations of interfaces). Thus any method that over-
rides a method from a superclass still has to respect the invariants. And
any method that one adds in the subclass, still has to respect the invariants
from the superclass. This leads to a very nice separation of concerns.

An important point to realise is that invariants have to hold only in all
visible object states, i.e., in all states in which a method is called or termi-
nates. Thus, inside the method, the invariant may be temporarily broken.
So for example, the following possible implementation of addCredits is cor-
rect, even though it breaks the invariant inside the method: if credits +

c is sufficiently high, the status is changed to master. After this assign-
ment the invariant does not hold, but because of the next assignment, the
invariant is re-established before the method terminates.

/*@ requires c >= 0;

ensures getCredits() == \old(getCredits()) + c;

*/

public void addCredits(int c) {

if (credits + c>= 180) {status = master;} // invariant broken!

credits = credits + c;

}

2Not to be confused with loop invariants, as discussed in Programmeren 1. These will
be discussed in Chapter 5.5.
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package chapter2;

interface StudentWithInv {

public static final int bachelor = 0;
public static final int master = 1;

//@ invariant getCredits() >= 0;
//@ invariant getStatus() == bachelor ||
//@ getStatus() == master;
//@ invariant getStatus() == master ==>
//@ getCredits() >= 180;

//@ initially getCredits() == 0;
//@ initially getStatus() == bachelor;

//@ constraint getCredits() >= \old(getCredits());
//@ constraint \old(getStatus()) == master ==>
//@ getStatus() == master;
//@ constraint \old(getName()) == getName();

/*@ pure */ public String getName();

/*@ pure */ public int getStatus();

/*@ pure */ public int getCredits();

//@ ensures getName().equals(n);
public void setName(String n);

/*@ requires c >= 0;
ensures getCredits() == \old(getCredits()) + c;

*/
public void addCredits(int c);

/*@ requires getCredits() >= 180;
requires getStatus() == bachelor;
ensures getCredits() == \old(getCredits());
ensures getStatus() == master;

*/
public void changeStatus();

}

Figure 2.2: Interface Student with class-level specifications
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package chapter2;

interface CallBack {

//@ invariant getX() > 0;

//@ invariant getY() > 0;

/*@ pure */ public int getX();

/*@ pure */ public int getY();

//@ ensures getX() == x;

public void setX(int x);

//@ ensures getY() == y;

public void setY(int y);

//@ ensures \result == getX() % getY();

public int remainder();

public int longComputation();

}

Figure 2.3: Interface CallBack

However, if a method calls another method on the same object, it has to
ensure that the invariant holds before this callback. Why this is necessary,
is best explained with an example. Consider the interface CallBack in
Figure 2.3.

Typically, correctness of the method remainder crucially depends on the
value of getY being greater than 0. Suppose we have an implementation of
the CallBack interface, where the method longComputation is sketched as
follows.

public int longComputation(){

...

if (getY() ....) {

setY(0); // invariant broken

}
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...

int r = remainder(); // callback

...

setY(r + 1) // invariant re-established

...

return ...

}

Naively, one could think that the fact that the invariant about getY is
broken inside this method, is harmless, because the invariant is re-established
by the setY(r + 1) statement. However, the call to the method remainder

is a callback, and the invariant should hold at this point. In fact, correct
functioning of this method call depends on the invariant holding. The in-
variant implicitly is part of remainder’s precondition. If the invariant does
not hold at the point of the callback, this means that remainder is called
outside its precondition, and no assumption can be made about its result as
well.

There is a way to avoid the requirement that the invariant has to hold
upon callback: this is by specifying that a method is a helper method.
Such methods cannot depend on the invariant to hold, and they do not
guarantee that the invariant will hold afterwards. Typically, only private
methods should be specified as helper methods, and one does not want that
any other object can directly invoke a helper method.

Defining a precise semantics for invariants is still an active area of re-
search, see e.g. [44, 35, 42, 3]. An alternative approach, that is used in the
Spec# framework, is to explicitly unpack and pack invariants. An invariant
may only be broken if it has been explicitly unpacked. When the invariant
is re-established, it has to be explicitly be packed again. Every method
can then specify explicitly whether it assumes invariants to hold, i.e., to
be packed, or not. This approach is sometimes referred to as the Boogie
methodology [2].

Finally, it is important to realise that the notion of object invariant that
we discussed here only makes sense in a sequential setting. In a multi-
threaded setting, there always may be another thread accessing the object
simultaneously, and cannot talk about visible state semantics anymore. In-
stead, in a multithreaded setting, one sometimes specifies so-called strong
invariants that may never be broken.

Initially Clauses Sometimes, one explicitly wishes to specify the con-
ditions that are satisfied by an object upon creation. Each (non-helper)
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constructor of the object has to establish the predicate specified by the ini-
tially clause. Figure 2.2 shows some possible initially clauses for the Student
interface.

Again, it would be possible to specify this property as a postcondition
of all constructors, instead of as a single initially clause. But in this way,
we ensure that also subclasses respect the initially clause, and that any
additional constructor has to respect it.

Constraints Invariants as we discussed above define a predicate that ev-
ery (visible) state of the object should respect. However, sometimes one
also wishes to specify how an object may evolve over time, i.e., the rela-
tionship that exists between the pre-state and the post-state of a method
call. For this, history constraints (usually constraints for short) have been
introduced [36].

Figure 2.2 defines several constraints for the Student interface. The
first constraint specifies that the amount of credits can never decrease. The
second constraint specifies that if a student has obtained the master status,
he will remain a master student, and cannot be downgraded to a bachelor
student again. Finally, the third constraint specifies that a student’s name
can never change.

When specifying constraints, it is important that they should be “non-
strict”, i.e., it should be possible to respect a constraint without actually
changing the state that is specified by the constraint. In particular, any pure
method should be able to respect the constraint. Therefore, one should not
specify the following strict constraint:

constraint \old(getCredits()) < getCredits();

as it is impossible to respect this constraint with a pure method.

Constraints are implicit postconditions, but just as invariants and ini-
tially clauses, they have the advantage that they are inherited, and imme-
diately are required to hold for any additional methods.

As for invariants, constraints are specified in terms of visible states. In
particular, a constraint is a relation that has to be satisfied by any two
consecutive visible states.

Consider the following possible implementation of addCredits.

/*@ requires c >= 0;

ensures getCredits() == \old(getCredits()) + c;

*/

// pre-state
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public void addCredits(int c) {

credits = credits + c;

if (credits >= 180) {

// call-state changeStatus

changeStatus();

// return-state changeStatus

}

} // post-state

To show that the constraint is respected, it has to hold for the following
visible state pairs:

• (pre-state, call-state changeStatus)

• (call-state changeStatus, return-state changeStatus)

• (return-state changeStatus, post-state)

Again, in a multithreaded setting, the notion of constraint becomes un-
clearer. However, a constraint such as that getName returns a constant value
could still be meaningful also in a multithreaded setting (except that the
number of possible visible state pairs that have to be considered might grow
exponentially).

Variable declarations So far, the specifications that we have seen have
not specified anything about the values of an object’s instance variables.
Typically, these are declared private, and private elements should not be
used in (public) specifications. The specifications should only be written in
terms of public elements that are visible outside the class3.

Therefore, in our examples, the pure get-methods were used to spec-
ify how the internal state of the object was changed. However, sometimes
this is not possible, or not convenient. As an alternative, one can specify
that a variable should be spec_public. This means that the variable at
specification-level has public visibility, and in particular that the specifica-
tions can be written in terms of these variables.

If we specify the instance variables of class CStudent to be spec_public,
then its constructor can also be specified as follows.

3In fact, the story is more subtle: the standard Java access modifiers can be used to
control visibility of the specifications, see the JML reference manual [33]. However, for
this course it is sufficient to consider specifications to be publicly visible.
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class CStudent implements Student {

/*@ spec_public */ private String name;

/*@ spec_public */ private int credits;

/*@ spec_public */ private int status;

....

/*@ requires c >= 0;

ensures credits == c;

ensures status == bachelor;

ensures name = n;

*/

CStudent (int c, String n) {

credits = c;

name = n;

status = bachelor;

}

}

In Chapter 4, we will see that spec public variables are actually a special
instance of model variables that directly represent the underlying private
variables.

Static class specifications For all class-level specification constructs,
static variants exists. For example, an invariant might restrict the value of
a static variable, or a constraint might restrict the evolution of a static vari-
able. Since instance methods might change static variables, static invariants
and constraints have to be respected by instance methods. In contrast, in-
variants and constraints that only restrict the instance variables of a method
cannot be invalidated by a static method – and thus this does not have to
be checked explicitly.

2.4 Specifying Exceptional Behaviour

So far, we have only considered normal termination of methods. But in
some cases, exceptions cannot be avoided. Therefore JML also allows one
to specify explicitly under what conditions an exception may occur.

The signals and signals_only clauses are introduced to do exactly
this. The signals clause is part of a method specification. Its syntax is
signals (E e) Predicate, and it has the following meaning: if the method
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package chapter2;

class Average {

/*@ spec_public */ private Student[] sl;

/*@ signals_only ArithmeticException;

signals (ArithmeticException e) sl.length == 0;

*/

public int averageCredits() {

int sum = 0;

for (int i = 0; i < sl.length; i++) {

sum = sum + sl[i].getCredits();

};

return sum/sl.length;

}

}

Figure 2.4: Class Average

terminates because of an exception that is an instance of class E – thus, its
dynamic type may also be a subtype of E – , then the Predicate has to hold.
The variable name e can be used to refer to the exception in the predicate.
The signals_only clause is also part of the method specification. Its syntax
is signals_only E1, E2, .., En, meaning that if the method terminates
because of an exception, the dynamic type of the exception has to be a
subclass of E1, E2, ..., or En.

Consider for example class Average in Figure 2.4. The specification of
method averageCredits states that the method may only terminate with
an ArithmeticException – and thus, it will not throw an ArrayIndexOut-

OfBoundsException, and if this exception occurs, then this is caused by the
fact that the length of sl is 0.

Notice that it is incorrect to use an ensures clauses, instead of signals
clause: an ensures clause specifies a normal postcondition, that only holds
upon normal termination of the method.

Above, in Section 2.2 we have seen that a method can have a so-called
normal_behavior specification. Implicitly, this says that the method has
to terminate normally. Similarly, JML also has an exceptional behavior

method specification. This specifies that the method has to terminate, be-
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cause of an exception. As mentioned above, a behavior specification only
enforces that a method terminates, but it does not exclude exceptional ter-
mination. Thus a behavior specification may well contain a signals or
signals_only clause, whereas a normal behaviour specification may not
contain these, and an exceptional behaviour specification may not contain
an ensures clause.

Such exceptional behaviour specifications are mainly used when several
method specifications are combined. A single method can be specified with
several method specifications, joined with also. This should be interpreted
as a conjunction of method specifications. Consider for example the more
detailed specification for averageCredits in Figure 2.5.

This states that if sl.length > 0, i.e., there are students in the list,
then the method terminates and the result is the average value of the cred-
its obtained by these students. If sl.length == 0 then the method will
terminate exceptionally, with a ArithmeticException. In this example,
the two preconditions together cover the complete state space for the value
of sl.length. If sl.length could be less than 0, the method’s behaviour
would not be specified.

Finally, it is important to realise that invariants and constraints also
should hold when a method terminates exceptionally. This might seem
strange at first: something goes wrong during the execution, so why would
it be necessary that the object stays in a good state. But in many cases,
the object can recover from the exception, and execution on it can continue.
But this means that it is necessary that also when an exception occurs, the
object stays in a “well-defined” state, i.e., a state in which the invariants
hold, and that evolves according to the constraints.

2.5 Desugaring Multiple Method Specifications

Combining different method specifications with an also is convenient to
obtain readable specifications. However, to develop tool support, it is better
to have a single specification per method.

Therefore, a method specification desuguaring procedure has been de-
fined [45] that transforms specifications in such a way that every method
is annotated with exactly one method specification. This desugaring pro-
cedure also incorporates invariants, initially clauses and constraints into
method specifications, where appropriate.

For the purpose of System Validation, it is not necessary to understand
all the details of the transformation. However, to understand the feedback



24 CHAPTER 2. CRASH COURSE ON JML

package chapter2;

class Average {

/*@ spec_public */ private Student[] sl;

/*@ normal_behavior

requires sl.length > 0;

ensures \result ==

(\sum int i; 0 <= i && i < sl.length;

sl[i].getCredits())/sl.length;

also

exceptional_behavior

requires sl.length == 0;

signals_only ArithmeticException;

signals (ArithmeticException e) true;

*/

public int averageCredits() {

int sum = 0;

for (int i = 0; i < sl.length; i++) {

sum = sum + sl[i].getCredits();

};

return sum/sl.length;

}

}

Figure 2.5: Class Average

from the tools that validate the JML specifications, it is important to have
some idea how this procedure works. For a detailed description, we refer to
the paper that describes the desugaring procedure in full detail [45].

The main steps are as follows:

• Consider the method specifications that are combined with also. The
complete precondition for the method, i.e., the precondition for which
the methods behaviour is described, is the disjunction of the individual
preconditions.

• The (normal or exceptional) postconditions only have to hold if the
appropriate precondition was true in the pre-state. Therefore, every
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postcondition is preceded by an implication about the precondition in
the pre-state (using \old).

• The requirement that the method terminates (either normally or ex-
ceptionally) is expressed using a diverges clause.

• Invariants are added as pre- and postconditions.

• Constraints are added as postconditions.

• Invariants and initially clauses are added as postconditions to con-
structors.

For method averageCredits the desugaring procedure returns the follow-
ing single method specification (where some obvious simplifications can be
applied):

/*@ behavior

requires sl.length > 0 || sl.length == 0;

ensures \old(sl.length > 0) ==>

\result ==

(\sum int i; 0 <= i && i < sl.length;

sl[i].getCredits())/sl.length;

signals_only ArithmeticException;

signals (ArithmeticException e) \old(sl.length == 0);

diverges sl.length > 0 ==> false;

diverges sl.length == 0 ==> false;

*/

2.6 Inheritance of Method Specifications

Above, we have already mentioned that subclasses inherit class-level specifi-
cations (invariants, initially clauses and constraints). Method specifications
are also inherited. Concretely, this means the following:

• every class that implements an interface has to respect the specifica-
tions of the interface; and

• every class that extends a another class has to respect the specifications
of these class.
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This means in particular that every method that overrides a method from a
superclass should still respect the method specification from the superclass.
Any additional specification of the subclass is implicitly combined (with
also) with the specifications from the superclass4.

This makes the subclass a behavioural subtype of the superclass [36], i.e.,
in any context where an instance of the superclass is expected, an instance of
the subclass can be safely used, and when you look at it from the superclass
perspective, you cannot observe any difference in behaviour.

This idea is crucial for the correctness of object-oriented programs. You
can specify the behaviour of a class in an abstract way. For example, if you
have an array of students, as in class Average, you know that the concrete in-
stances that may be stored in the array may have different implementations,
but you know that they all implement the methods specified in the interface
Student, respecting the behaviour that is specified for this interface.

4And the desugaring procedure will explicitly repeat the specifications from the super-
class.



Chapter 3

Run-time checking of JML
annotations

Now that we have seen how we can specify software using JML, the next
question is how to validate that a program indeed respects its specification.
We will look at different techniques for this. This chapter discusses how the
program can be instrumented in such a way that during execution, validity
of the specification can be checked. The next chapter discusses how this
validity check can be done at compile time, without actually executing the
program.

When work on JML started, its initial goal was to support run-time
checking of specifications. The idea of run-time checking is that every pre-
condition and postcondition is checked by simply executing the predicate
and testing whether the outcome of this evaluation is true. Execution of
the precondition should be done at an appropriate point in the code:

• a precondition should be evaluated before the method body is exe-
cuted; and

• after the method body has terminated, the postcondition should be
evaluated, before control is given back to the caller.

It is important to realise that to make this approach work in practice, one
needs a desugaring procedure that can translate a bunch of method specifi-
cations into a single method specification. In this way, for every method a
single precondition and a single postcondition test can be implemented.

This approach is often advocated as a good way to test your program.
For example, in the text book on object-oriented programming by Niño and
Hosch [43] (used in Programmeren 1 and 2), it is shown how precondition

27
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specifications can be translated systematically into assert-statement at the
beginning of a method body.

One of the examples that we will use in this chapter is the class CStudent.
This implements the interface Student introduced in the previous chapter
by defining an explicit credit field. In addition, it also contains several
extra methods, discussed below. The implementation of class CStudent

is given in Figures 3.1, 3.2. Notice that we do not have to repeat the
specifications that are inherited from Student. A remark on notation: {| ...
|} is used for nested specifications: the two specifications of activityBonus
conjoined with also have a common precondition 0 <= bonus && bonus

<= 5 && active;.

Consider the method addCredits with the following (inherited) specifi-
cation.

/*@ requires c >= 0;

ensures getCredits() == \old(getCredits()) + c;

*/

Using the approach as advocated by e.g., Niño and Hosch, a programmer
would have to transform this method implementation manually into the
following.

public void addCredits(int c) {

assert c >= 0;

credits = credits + c;

}

Niño and Hosch argue that one does not have to test for the postcondition,
as this is the programmer’s responsibility. In their view, a programmer
would have to use other means to ensure that their own implementation
is correct (such as static checking for example, as discussed in the next
chapter). However, one can never be sure that the method is called under
the right conditions, thus it is important to test for the precondition. If
one would wish to test for the postcondition as well, this could be done by
adding an additional assert at the end of the method body.

However, inserting all these checks manually is cumbersome and error
prone. Besides the amount of work, there are are also more important
problems, such as:

• a method might have multiple exit points, and the postcondition has
to be checked at every exit point;
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package chapter3;

import chapter2.Student;

class CopyOfCStudent implements Student {

private String name;

private int credits;

private int status;

/*@ spec_public */ private boolean active;

/*@ requires c >= 0;

ensures getCredits() == c;

ensures getStatus() == bachelor;

ensures getName() == n;

*/

CopyOfCStudent (int c, String n) {

credits = c;

name = n;

status = bachelor;

}

public String getName() {

return name;

}

public int getStatus() {

return status;

}

/*@ pure */ public int getCredits() {

return credits;

}

public void setName(String n) {

name = n;

}

Continued in Fig. 3.2

Figure 3.1: Class CStudent with explicit credit field (1/2)
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Continued from Fig. 3.1

public void becomeActive() {

active = true;

}

public void addCredits(int c) {

credits = credits + c;

}

public void changeStatus() {

status = master;

}

/*@ requires 0 <= bonus && bonus <= 5 && active;

{|requires getStatus() == bachelor;

ensures getCredits() == (\old(getCredits()) +

bonus > 180 ? 180 : \old(getCredits()) +

bonus);

also

requires getStatus() == master;

ensures getCredits() == \old(getCredits() +

bonus);

|}

*/

public void activityBonus(int bonus) {

if (active) { addCredits(bonus);}

}

}

class ExecuteCStudent {

public static void main (String [] args) {

CopyOfCStudent s = new CopyOfCStudent(0, "marieke");

s.becomeActive();

s.addCredits(178);

s.activityBonus(5);

System.out.println(s.getCredits());

System.out.println(s.getStatus());

}

}

Figure 3.2: Class CStudent with explicit credit field (2/2)
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• a method might terminate exceptionally, to evaluate the (exceptional)
postcondition, the state temporarily has to be brought back to normal
again;

• specification-only expressions cannot be used in a Java assert, and
encoding them is often quite complex;

• values of expressions in the pre-state have to be stored explicitly; and

• class-level specifications would give rise to asserts in many different
places.

3.1 Systematically Inserting Run-Time Checks

Therefore, it is a logical idea to have tool support for doing this. Bertrand
Meyer was the first to introduce this idea as an integral part of a program-
ming language. To support the Design by Contract approach [39], the Eiffel
compiler came with a special option to insert these run-time checks in the
code. Also JML has a special tool that inserts these run-time checks [15].
Initially, the run-time checker was implemented by inserting explicit checks
in the source code. Later, this was adapted, and now explicit tests are added
to the bytecode.

A run-time checker has to satisfy three important requirements.

• Run-time checking should be transparent : if there are no annotation
violations, then execution with or without run-time checking enabled
should be identical1

• Run-time checking should isolate the source of the problem. An an-
notation violation should be reported when it occurs, and it should
relate back to the point where the problem occurred, so that the user
can actually trace the problem.

• Run-time checking should be trustworthy : if an annotation violation
is signalled, it should indeed be a real annotation violation.

Adding run-time checking for a large part is engineering. To ensure that
in case of exceptional termination the appropriate checks are executed, the
code is wrapped in the bytecode equivalents of a try-catch-finally state-
ment. In the catch block, the appropriate exceptional postconditions (in-
cluding invariants and constraints) are tested, and if these succeed, then the
appropriate exception is rethrown.

1Apart from performance, of course.
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package chapter3;

class ExecuteCStudent2 {

public static void main (String [] args) {

CStudent s = new CStudent(0, "marieke");

s.becomeActive();

s.addCredits(178);

s.activityBonus(5);

System.out.println(s.getCredits());

System.out.println(s.getStatus());

}

}

Figure 3.3: Method main to execute class CStudent

3.2 Executing a Run-Time Checker

To illustrate the use of a run-time checker, we consider the method activity-

Bonus of class CStudent. If a student is active (for example as a member
of the Interactief board), the university can provide him a maximum of 5
bonuscredits for this. However, as specified, a Bachelor student can never
obtain Master credits with this bonus, i.e., the new credits can never be more
than 180. Unfortunately, the programmer did not correctly implement this
rule.

We show how to use the run-time checker to find this problem. As men-
tioned above, we have to make an executable program. Thus, we write a
main method, as displayed in Figure 3.3. This first creates a new student
object. Then we have to bring the object into a state where the annota-
tion violation will be detected. If we just call activityBonus once with
argument 5, then the annotation violation will not be detected. Instead, we
first make the student active by executing becomeActive, and then we call
addCredits, where there is no bound on the credits that can be added. We
use this to give the student 178 credits. Then we call activityBonus.

If we now execute the program with the run-time checker, this will pro-
duce the following error message (with a few linebreaks added for readabil-
ity).

Exception in thread "main" org.jmlspecs.jmlrac.runtime.
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JMLInternalNormalPostconditionError:

by method CStudent.activityBonus

at chapter3.CStudent.activityBonus

(ExecuteCStudent.java:1895)

at chapter3.ExecuteCStudent.internal$main

(ExecuteCStudent.java:2116)

at chapter3.ExecuteCStudent.main

(ExecuteCStudent.java:2390)

When using the run-time checker to detect annotation violations, it is
important that many different corner cases are checked. Just as with more
traditional testing techniques, the corner cases are the most likely to cause
problems. Also, it is important to try to get a good code coverage. By
testing executions that cover all possible execution paths, one can increase
the confidence that the implementation respects the specifications. The
JML annotations typically guide one in developing these test cases. This
idea is also exploited in the tool JMLUnit [48]; an extension of JUnit that
generates test cases based on the JML annotations.

3.3 Other run-time checkers

Run-time checking is a commonly used validation technique. In this course,
we focus on run-time checking of annotations. Some tools have been devel-
oped that apply similar approaches (e.g., Jass for Java applications [30, 6],
and Code Contracts for Microsoft’s C# [16]). Also aspect-oriented and other
compositional approaches are used to introduce run-time checks into code
by weaving (see e.g., [1, 46]).

Much work on run-time also exists for temporal properties. As a spin-off
of the JPF project, a project called Java Path Explorer developed run-time
checking techniques for safety and bounded liveness properties [22].

Finally, another active branch of research on run-time checking is the
checking of dedicated properties. If you want to check a single property on
your program, e.g., the program does not use too much resources, confi-
dential information does not flow to publicly visible variables, or response
time of certain actions is not too long, a possible way to guarantee this is
to use run-time checking and to break off program execution if the desired
property is (or might be) violated.
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3.4 Monitoring of safety and security properties

Many common safety and security properties can be expressed as a simple
automaton that describe the legal behaviours, not violating security. Exam-
ples of such properties are:

• at most one file can be opened at the same time;

• every send message should be preceded by a read message;

• protected data may only be accessed by un authorised user;

• an SMS should only be send after asking authorisation; and

• if a pincode is entered incorrectly three times consecutively, a paycard
gets blocked.

A commonly used way to guarantee that an application respects such a
property is monitoring of the automaton. The idea, originally introduced by
Schneider [47], is that the application is run in parallel with the automaton
that encodes the desired property. The automaton describes the abstract
state of the program. Upon certain dedicated events in the program, typi-
cally calls and returns to methods, the automaton makes a transition to a
new state. If the automaton reaches a special error state (or is unable to
make a transition, depending on how the property is precisely modeled), this
means that the property that is being monitored is violated. Thus, to avoid
any problems, the application has to be stopped immediately. Notice that
this approach in this basic form only works for safety properties. However,
in the literature one can find approaches for monitoring liveness properties,
assuming some bounds on when the events eventually have to happen, see
e.g., [22].

With JML, a similar monitoring approach can be achieved. A safety
property can be encoded as a collection of JML annotations, and violation of
the JML annotations during program execution ensure that the application
will terminate.

During this course, we will study how we can encode a security property
manually. In the literature, also some more systematic translations are
developed, see e.g., the AutoJML tool [25] and the work of Huisman and
Tamalet [27], who define a formal translation and prove this correct.

Consider the class Card in Figure 3.4. It has a method initializeCode

that be used to initialize the pincode. After initializing the card, before a
payment can be made, a pincode has to be entered. The enterPincode
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package chapter3;

interface Card {

void initialiseCard();

boolean enterPin(int pin);

void makePayment();

}

Figure 3.4: Class Card

method returns a boolean, denoting whether this was the correct pincode.
If there are three consecutive wrong attempts to enter the pincode, the card
gets blocked. Properties such as this one are often called life cycle properties.
They are another typical example of the properties that can be encoded with
this approach.

To encode this, we add ghost variables to the interface. These are
specification-only variables that can be updated in the specification, via
a special set annotation. Ghost variables are typically used to encode some
control information about the state. First, we add constants (public static
final) to encode the different states. We also define a special state BLOCKED

that we actually never want to reach. Then we add a ghost variable state

that is used to keep track of the card state. It is initialised to FRESH.

We add an invariant that states which values we want state to have.
Notice that here we explicitly do not allow the state to be BLOCKED: if the
card enters a blocked state, an annotation violation will be signalled.

Next, we add a constraint that specifies how state transitions can hap-
pen: from the FRESH state, one only can move to a READY_FOR_USE state,
from READY_FOR_USE, one can move to READY_FOR_PAYMENT and BLOCKED,
and when a card is BLOCKED, it will stay blocked forever. Notice that the
constraint also allows in all cases to not change state: this is the so-called
non-strictness condition on constraints: it should be possible to call a pure
method, and to still respect the constraint (even though in this very simple
example, it is not strictly necessary).

Further, we add an extra invariant, stating that the state can only be-
come blocked if the number of wrong pin attempts is 3. This actually could
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have been part of the constraint of as well, but we felt it was clearer to
specify this separately.

Finally, to make the implementation respect the specification, state tran-
sitions have to be inserted at appropriate places. These correspnd to the
events that make the automaton transition in the monitoring approach. The
state transitions are added here as statement annotations, i.e., annotations
that are part of the code, instead of the documentation, and that only serve
to show correctness of the class documentation. The statement annotations
here start with the set keyword. Basically, they describe an assignment
to a ghost variable. (It is also possible to write more complex statements,
using e.g., if – provided the statement only has a side effect on the ghost
variables.

The complete result of the annotation process is depicted in Figures 3.5,
3.6.

An advantage of this approach over the traditional monitoring approach
is that the JML annotations can be validated in different ways. In Chapter 5
we will discuss how annotations can be validated without actually executing
the code. Monitoring often has a significant performance overhead. If we
can use static methods to guarantee that certain parts of the code never
violate the security or safety properties, then the run-time checks can be
avoided in these places – thus reducing execution overhead.
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package chapter3;

class CardImpl implements Card {

/*@ ghost public static final int FRESH = 0;

ghost public static final int READY_FOR_USE = 1;

ghost public static final int READY_FOR_PAYMENT = 2;

ghost public static final int BLOCKED = 3;

ghost public int state;

ghost public int attempts;

*/

/*@ invariant state == FRESH ||

state == READY_FOR_USE ||

state == READY_FOR_PAYMENT;

*/

/*@ initially state == FRESH;

*/

/*@ constraint

(\old(state) == FRESH ==> state == FRESH ||

state == READY_FOR_USE) &

(\old(state) == READY_FOR_USE ==>

state == READY_FOR_USE ||

state == READY_FOR_PAYMENT ||

state == BLOCKED) &&

(\old(state) == READY_FOR_PAYMENT ==>

state == READY_FOR_PAYMENT ||

state == READY_FOR_USE) &&

(\old(state) == BLOCKED ==> state == BLOCKED);

*/

/*@ invariant state == BLOCKED <==> attempts == 3;

*/

Continued in Fig. 3.6

Figure 3.5: Class CardImpl with an encoding of the live cycle property (1/2)
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Continued from Fig. 3.5

/*@ also

requires state == FRESH;

ensures state == READY_FOR_USE && attempts == 0;

*/

public void initialiseCard() {

// ..

//@ set state = READY_FOR_USE;

//@ set attempts = 0;

}

/*@ also

requires state == READY_FOR_USE && attempts < 3;

ensures \result ==> state == READY_FOR_PAYMENT && attempts == 0;

ensures !\result ==> attempts == \old(attempts) + 1;

ensures !\result && attempts < 3 ==> state == READY_FOR_USE;

ensures !\result && attempts == 3 ==> state == BLOCKED;

*/

public boolean enterPin(int pin) {

boolean result = false;

// ...

//@ set attempts = (result? 0 : attempts + 1);

//@ set state = (result?

//@ READY_FOR_PAYMENT :

//@ (attempts == 3 ? BLOCKED : READY_FOR_USE));

return result;

}

/*@ also

requires state == READY_FOR_PAYMENT;

ensures state == READY_FOR_USE;

*/

public void makePayment() {

// ...

//@ set state = READY_FOR_USE;

}

}

Figure 3.6: Class CardImpl with an encoding of the live cycle property (2/2)



Chapter 4

Abstract Specifications

An important feature of specifications is that they provide abstraction over
the concrete implementations. In the previous chapters, we have seen inter-
face Student with its (obvious) implementation CStudent. However, a more
complicated implementation can be imagined using a list of individual re-
sults. Figures 4.1, 4.2 contains such an implementation. Notice that it is on
purpose that this class does not implement interface Student. If we would
do that, the class would inherit the specification in terms of the accessor
methods, but in this chapter we want to illustrate a different specification
technique in terms of abstract state.

This implementation might be correct, but we would typically not want
to expose it to the users of the class. Therefore, we define model variables
that define an abstract state for the class: they are credits and status.
Internally, a different implementation is used, but the specifications of the
methods are given in terms of the abstract state – and thus is sufficiently
abstract for the user to understand. This idea has originally been introduced
under the name data abstraction by Hoare [23].

But of course, to make sure that the concrete implementation corre-
sponds to the abstract specification, a link between the two has to be made.
For this purpose, the represents clause defines how the value of the abstract
variable is defined in terms of the values of the concrete variables. Internally,
whenever a specification in terms of abstract variables is encountered, the
tools translate this in a specification in terms of the concrete variables, using
the represents clause, and then adherence of the implementation w.r.t. this
concrete specification is validated.

In fact, the specification approach using model variables would also have
been a convenient way to specify the interface Student. Because of the flex-

39
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class CCStudent {

public final static int bachelor = 0;

public final static int master = 1;

private List<Integer> credit_list;

/*@ model private int status;

model private int credits;

*/

/*@ represents credits <- sum();

represents status <- (sum() < 180 : bachelor : master);

*/

/*@ ensures credits == 0;

ensures status == bachelor;

*/

CCStudent () {

credits = new;

status = bachelor;

}

//@ ensures \result == status;

public int getStatus() {

if (sum() >= 180) {

return master;

} else {

return bachelor;

}

}

//@ ensures \result == credits;

/*@ pure */ public int getCredits() {

return sum();

}

public void addCredits(int c) {

credit_list.add(c);

}

Continued in Fig. 4.2

Figure 4.1: Class CCStudent with an alternative implementation for
credits(1/2)
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Continued from Fig. 4.1

private int sum() {

int sum = 0;

foreach int i:credit_list {

sum = sum + credit_list.get(i);

}

return sum;

}

}

Figure 4.2: Class CCStudent with an alternative implementation for
credits(2/2)

ible connection between concrete and abstract state using the represents

clause, this would not impose any restriction on the internal state of a class
implementing the interface.

Sometimes, a represents clause cannot be defined directly as a transla-
tion into concrete variables: sometimes just a relation between the abstract
and the concrete state can be expressed, or even only a dependency. JML
provides an alternative form of represents clauses and also a dependency
clause for this. However, using these falls out of the scope of this course.

Model variables are useful in many cases. Typical examples are as in
the example above, where a non-standard implementation is used (often for
performance reasons), for the specification of interfaces, and when defining
classes that encode complex values. A well-known example in the literature
is the specification of a class Decimal [12]. The class implements decimal
variables using a intPart and decPart variable, but the specification is
given in terms of a single model variable that represents the value of the
composed decimal number.

To allow to give nice mathematical specifications, JML comes with a
library of so-called model classes. These define classes that encode typical
mathematical objects, such as sets, functions and bags. Since they are
defined as Java (JML) classes, it is possible to use them as type for a model
variable, and still relate them to concrete state. Support to reason about
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them in mathematically easy way, however, is still a subject of research (see
e.g., [14, 20] for some work in this direction).

4.1 On spec public variables

In Chapter 2 spec˙public variables have been introduced, in order to use pri-
vate variables in specifications. In fact, declaring a variable x as spec_public
implicitly is equivalent to declaring a model variable, say _x, and a repre-
sents clause represents _x <- x. Thus in particular, from the class user’s
point of view, the two specifications should be equivalent, and the specifica-
tion only gives an abstract view on the implementation.

4.2 Model versus ghost variables

Finally, it is important to understand the difference between model and
ghost variables. Both are variables that are used for specification-purposes
only, and they do not occur during the execution of the program.

However, model variables provide an abstract representation of the state.
If the underlying state changes, implicitly the model variable also changes.
Often it is possible to define this relationship explicitly as a translation, but
sometimes it can only be given in a non-constructive manner, or even as a
dependency relation.

In contrast, ghost variables extend the state. They provide some addi-
tional information that cannot be directly related to the object state. Ghost
variables are often used to keep track of the events that have happened on an
object, e.g., which methods have been called, how often have these methods
been called etc.. There also exists work where ghost variables have been used
to keep track of the resources used by the program: every time a new object
is created, there is an associated set-annotation that increases a resource
counter, modelled as a ghost variable [8]. In this way, the specification can
state something about the number of objects that have been created by the
program. This information allows then to define a resource analysis over the
application.



Chapter 5

Static checking of JML
annotations

Run-time checking is a useful technique to get quick feedback on whether an
application respects its (JML) annotations. However, the drawback of it is
that in general it cannot give a 100 % correctness guarantee. For almost any
realistic program, it is impossible to get complete coverage by exploring all
possible program execution paths. And even when the program’s state space
is finite, and this might be possible in principle, the performance overhead
will be very high.

If we want to have such a high correctness guarantee, we need to use dif-
ferent validation techniques. Program logics have been developed to reason
about programs, without actually executing them. The idea of using a pro-
gram logic and pre- and postconditions to reason about programs dates back
to the sixties. Floyd was the first to introduce the concepts of pre- and post-
conditions, and thinking about program behaviour in an non-executional
way. This led Hoare in 1969 to come up with a concrete set of rules to
reason about programs [24]. These rules (and any variations thereof) are
often called Hoare logic.

5.1 A Quick Overview of Hoare Logic

Given a precondition P , a postcondition Q and a statement S, a Hoare
triple {P}S{Q} has the following meaning: if statement S is executed in a
state x satisfying precondition P , and if execution of statement S terminates
in some state y, then this final state satisfies postcondition Q. Notice the
correspondence with the meaning of requires and ensures clauses in JML:

43
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these are just a more verbose way to write Hoare triples for methods.

The main idea of Hoare’s logic is to break down the correctness guarantee
of complex statements into correctness guarantees for the components of
these statements. Concretely, suppose we compose two statements S1 and
S2, and we want to show that {P}S1;S2{Q}, i.e., if execution starts in a
state satisfying P , then after termination of S1;S2, Q should hold. Then it
is sufficient to find an intermediate predicate R and to show {P}S1{R} and
{R}S2{Q}. Thus correctness of the composed statement is thus reduced to
a correctness problem of the components of the composed statements.

As a proof rule, this is expressed as follows:

{P}S1{R} {R}S2{Q}

{P}S1;S2{Q}

This should be read as follows: in order to prove the correctness triple below
the line, it is sufficient to prove the correctness triples above the line.

Another example of a Hoare logic proof rule is the rule for the conditional
statement (if-then-else).

{P ∧ c}S1{Q} {P ∧ ¬c}S2{Q}

{P}if c then S1 else S2{Q}

I.e., if the condition c holds, then provided the precondition P holds, the
then-branch S1 has to guarantee the postcondition Q, if the condition c does
not hold, then the else-branch S2 has to guarantee the postcondition.

A more interesting rule is the assignment axiom. This states that an as-
signment x:=E guarantees postcondition Q, if before the assignment Q[x\E]
was true, i.e., Q was any occurrence of x replaced by the expression E was
true. This is easiest understood with an example. Suppose that you have
an assignment x := y + 2;. If afterwards you want that x > 0, then this
only can be ensured if the value that is assigned to x was greater than 0,
i.e., the precondition has to be y + 2 > 0. Formally, this is expressed by
the following rule (where [x\E] denotes substitution of x by E – formal
definition of substitution falls out of the scope of this course).

{Q[x\E]}x := E{Q}

Finally, there are rules for method declarations that state that to prove
correctness of a method specification w.r.t. the method implementation, one
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has to prove correctness of the method body1.

{P}body{Q}

{P}void m() {body}{Q}

Key feature of Hoare logic is that it allows one to prove something about
a method for all possible input states and all possible arguments, and with-
out executing the code. We can prove for example that the body of a method
swap always swaps the values of the variables x and y, whatever their initial
values. In JML, the specification for this method would be the following:

//@ ensures x == \old(y) && y == \old(x);

void swap () {

int t = x;

x = y;

y = t;

}

In classical Hoare logic, this would be specified as follows:

{x = A ∧ y = B}swap(){x = B ∧ y = A}

A and B are often called logical variables. Implicitly, the correctness triple
holds for all possible values of A and B, and as demonstrated by the specifi-
cation above, their typical use is what is expressed using the \old keyword
in JML. The correctness proof for this method would then roughly look as
follows2:

{x = A ∧ y = B}int t = x{x = A ∧ y = B ∧ t = A}

{x = A ∧ y = B ∧ t = A}x = y{x = B ∧ y = B ∧ t = A} {x = B ∧ y = B ∧ t = A}y = t{x = B ∧ y = A}

{x = A ∧ y = B ∧ t = A}x = y; y = t{x = B ∧ y = A}

{x = A ∧ y = B}swap(){x = B ∧ y = A}

The Hoare triples as we have seen so far describe partial correctness re-
lations: if a method terminates, its postcondition will be established. Some-
times one wishes to specify explicitly that a method must terminate. For
this purpose, a total correctness relation is defined. For this we use the no-
tation [P ]S[Q]. Such a total correctness triple should be read as follows: if

1This rule comes in many variations, for rules with and without return values, param-
eters etc., but the basic idea is always the same

2In fact, a completely formal proof would also require the use of weakening and
strenghtening rules. That falls out of the scope of this course; for this we refer to the
course on Program Verification.
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we execute statement S from a state x in which precondition P holds, then
execution of statement S will terminate in a state y, and in this state y,
postcondition Q holds.

5.2 Mechanising Hoare Logic

Hoare logic as it is is not directly suited for developing tool support. The
complicating factor is that one needs to “invent” the intermediate predicates
that hold between the composition of two statements. However, in 1976, Di-
jkstra observed that it was actually not necessary to invent this intermediate
predicate; instead one could compute the weakest predicate that would en-
sure required postcondition. It would then be sufficient to show that the
specified precondition implied this weakest precondition. This computation
of the weakest precondition is expressed by the rules from the weakest pre-
condition calculus, where wp(S,Q) denotes the weakest predicate such that
{wp(S,Q)}S{Q} is a correct triple:

wp(S1;S2, Q) = wp(S1,wp(S2, Q))
wp(x:=E,Q) = Q[x\E]

wp(if c then S1 else S2, Q) = c⇒ wp(S1, Q) ∧ ¬c⇒ wp(S2, Q)

Thus, instead of “inventing” the intermediate predicate for a statement com-
position, the weakest precondition calculus “computes” it.

Finally, to show that a method implementation respects its specification,
one has to do the following: given precondition P , postcondition Q and
method body B, compute wp(B,Q) and show that P ⇒ wp(B,Q). Notice
that both the predicate P and the weakest precondition of the body and
the postcondition are predicates in first-order logic. For proving properties
in first-order logic, many different automated theorem provers exist.

Thus, by implementing the rules of the weakest precondition calculus,
and using an (or multiple) automated first-order theorem prover(s) for the
generated proof obligations, an automated program verification tool can be
built that allows one to prove that for any possible input state and any
possible input parameters, a method respects its specification.
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5.3 Automated Program Verification for Java

The ideas of the weakest precondition calculus form the basis for several
verification tools for Java, such as Loop [10], Krakatoa [38], Key [9]3, Ever-
est [13], and ESC/Java [17]. Also for other languages similar tools exist,
e.g., Code Contracts [37] and Spec# [4].

To apply this approach on a realistic programming language, such as
Java, the rules have to be adapted for side effects, exceptions and other
sources of abrupt termination, dynamic method binding etc., following the
Java semantics, see e.g., [26, 29, 40]. Of course, these tools all focus on se-
quential programs – to reason about multithreaded programs one needs tech-
niques to specify that one thread’s behaviour cannot influence the behaviour
of another thread. A possible approach for this is the use of concurrent sep-
aration logic, another extension of Hoare logic, that allows to explicitly talk
about which parts of the heap are accessed by a code fragment, see e.g. [28].

During the System Validation course, we will use the ESC/Java tool,
because it is one of the most well-developed tools to reason about Java. In
fact, at the end of the nineties, several people were working on verification
of Java programs. Java was a nice target language to reason about, be-
cause it had a reasonably well-defined semantics, described in the language
specification [21]. Initially, the tools that were being developed used dif-
ferent specification languages, but quickly JML emerged as the language of
choice for all these tools. Effort has been put in unifying the tools, so that
they all use the same specification language (possibly with some tool-specific
extensions, preceded by a special keyword).

ESC/Java initially started as a tool that would give fast feedback, by
compromising on soundness and completeness. Instead of applying a full
weakest precondition calculus, at some points some shortcuts were taken, to
be able to give quick feedback, without making large demands on the user.
In particular, initially there was no support for reasoning about loops – ev-
ery loop would simply be approximated by a single iteration in the veri-
fier. However, development of ESC/Java has continued, and now the tool
is mostly sound and complete. Some known sources of uncompleteness are
the handling of the ranges of primitive types, and a not fully sound and
complete semantics of class invariants. However, in practice the results of
the tool are very good, and if ESC/Java does not produce warnings on a
Java application, then it is highly likely to respect its specification.

3In fact, this uses an extension of Hoare logic, called dynamic logic, but the underlying
principles are basically the same.
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5.4 Reasoning about method calls

An important feature of Hoare logic-like approaches is that the verification
is modular. Each method is verified in isolation, and any method call in-
side a body is approximated by its method specification. As a concrete
example, suppose we verify method activityBonus from class CStudent

(in Figure 3.1)4.

/*@ requires 0 <= bonus && bonus <= 5 && active;

{|requires getStatus() == bachelor;

ensures getCredits() == (\old(getCredits()) + bonus > 180 ?

180 : \old(getCredits()) + bonus);

also

requires getStatus() == master;

ensures getCredits() == \old(getCredits() + bonus);

|}

*/

public void activityBonus(int bonus) {

if (active && getCredits() + bonus <= 180) {

addCredits(bonus);

} else {

setCredits(180);

}

}

This implementation calls method addCredits. Instead of inlining the
implementation of addCredits, the verification uses the specification of
addCredits.

/*@ requires c >= 0;

ensures getCredits() == \old(getCredits()) + c;

*/

public void addCredits(int c);

Suppose that we are verifying the case where getStatus() == bachelor &&

active && getCredits() + bonus <= 180. To guarantee the postcondi-
tion, one has to show the following:

0 <= bonus && bonus <= 5 && active &&

getStatus() == bachelor && \old(getCredits()) + bonus <= 180 ==>

getCredits() == \old(getCredits()) + bonus ==> (postcondition)
getCredits() == \old(getCredits()) + bonus

4Recall that the {|...|} notation is briefly explained in Chapter 3.
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In addition, one also has to show that the conjunction of the precondition of
activityBonus and activity implies the precondition of addBonus (bonus
>= 0), which is clearly the case.

However, things are not always that simple. Consider class Point in
Figure 5.1 and the class Line in Figure 5.3. For convenience, only a minimal
amount of specifications have been given, as this is sufficient to illustrate the
problem.

When we verify method stretchLine in class Line, we use the specifi-
cation of method moveHorizontal, as explained above. This seems to be
sufficient – but it is not! Because the specification of moveHorizontal does
not state anything about what happens with the value of the y field – and
thus, we cannot assume anything about y after the call to moveHorizontal.
As we cannot assume anything, we cannot be sure anymore that the line is
horizontal, and thus that the length method is even defined on it. Thus,
the postcondition of stretchLine cannot be formerly established.

This problem is known as the frame problem [11, 41]. Basically, the point
is that for modular verification one needs to know what is the frame of a
method, i.e., what are the variables that may be changed by the method,
and what is the anti-frame, i.e., which variables may not be changed by the
method.

To specify this, JML has a so-called assignable clause. This provides a
list of variable locations that may be modified by a method (thus, it may be
an over-approximation of the actual set of locations that is modified by the
method). By default, any pure method should have an empty assignable
clause. An assignable clause can also denote a set of locations; typical
examples are \nothing (the empty set, thus basically a pure method),
\everything (any location might be changed), and a[i..j], all elements
in the array between indices i and j. In the example above, we of course
should add a clause assignable x; to the specification of moveHorizontal,
thus implicitly saying that y may not be changed by this method.

Notice that specifications such as for getX and getY are really neces-
sary in this case. The specifications in Line for the points begin and end

use these methods. The specifications of getX and getY specify how these
methods relate to the variables x and y in class Point. Without this specifi-
cations, the verification of stretchLine cannot deduce that the outcome of
getY has not changed5 Again, it is important to realise that ESC/Java uses
only the specifications of getX and getY for verification, it does not look at

5Of course, the specifications in class Line also could be written in terms of begin.x,
begin.y etc. In that case, the specifications for getX would not be necessary.
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package chapter5;

public class Point {

private /*@ spec_public */ int x;

private /*@ spec_public */ int y;

Point(int x, int y){

this.x = x;

this.y = y;

}

//@ ensures \result == x;

/*@ pure */ int getX() {

return x;

}

//@ ensures \result == y;

/*@ pure */ int getY() {

return y;

}

void setX(int x) {

this.x = x;

}

void setY(int y){

this.y = y;

}

void move(int dx, int dy) {

x = x + dx;

y = y + dy;

}

Continued in Fig. 5.2

Figure 5.1: Class Point
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Continued from Fig. 5.1

assignable x;

ensures x == \old(x) + dx;

*/

void moveHorizontal(int dx) {

x = x + dx;

}

/*@ requires dy >= 0;

ensures y == \old(y) + dy;

*/

void moveVertical(int dy) {

y = y + dy;

}

}

Figure 5.2: Class Point

their implementation.

Of course, in this particular example, it would be possible to add a
postcondition getY() == \old(getY()). But in general this is not a sat-
isfactory solution: a class might have many variables and only a few are
typically changed by a method. Moreover, when a new variable is added,
for every method that does not change it, an additional postcondition about
this variable not being changed would have to be added. As one can imagine,
this is error-prone, and leads to overly verbose specifications.

Using assignable clauses, we can formulate a weakest precondition rule
to verify method calls6. Suppose that the call x.m() resolves to a method
with precondition Prem, postcondition Postm and assignable clause Am,
then roughly the rule looks as follows.

wp(x.m(), Q) = Prem ∧ (∀v ∈ Am.Postm ⇒ Q

The easiest way to remember is that every method call to m gives rise to
two proof obligations:

6Similar rules exist of course for rules with return value, parameters etc.
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package chapter5;

public class Line {

/*@ non_null */ Point begin;

/*@ non_null */ Point end;

//@ requires b != null && e != null;

Line(Point b, Point e){

begin = b;

end = e;

}

//@ ensures \result == (begin.getY() == end.getY());

/*@ pure */ boolean isHorizontal () {

return (begin.getY() == end.getY());

}

/*@ requires dx >= 0 && isHorizontal();

ensures isHorizontal();

*/

void stretchLine (int dx) {

end.moveHorizontal(dx);

}

}

Figure 5.3: Class Line
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• The postcondition of the method call has to ensure the postcondi-
tion Q, where for all variables in the assignable clause of the method,
nothing is known about their values, except what is specified in the
postcondition of m.

• The weakest precondition of the code preceding the method call w.r.t.
the precondition of m has to be implied by the precondition P .

5.5 Statement Annotations - Helping the Verifier

Sometimes, the program verifier has to get some guidance. In exceptional
cases, a complex intermediate predicate has to be given explicitly, using an
@assert P; annotation. This is for example necessary when complex cal-
culations are made, and the automated theorem provers need some guidance
on how to reason about them. Every @assert P annotation gives rise to
two proof obligations:

• the precondition of the method that is being verified has to imply the
weakest precondition of the code preceding the assertion and postcon-
dition P ;

• P has to imply the weakest precondition of the code following the
assertion and the postcondition.

For straightline code, such annotations are almost never necessary. One
exception in the literature is the verification of addition and multiplication
of class Decimal [12].

However, for code that contains loops, such annotations are almost al-
ways necessary. To explain this, we first present the Hoare logic rule for
while-loops.

{c ∧ I}S{I}

{I}while c do S{¬C ∧ I}

This rule features a so-called loop invariant I: a predicate that is pre-
served by every iteration of the loop. To show that the invariant is preserved
by every iteration of the loop, one has to show that always if the condition
holds – and thus the loop body will be executed once more – if the invariant
holds before the loop body is executed, then it will also hold after the loop
body has terminated. From this we can conclude that if the whole loop is
executed in a state in which the loop invariant holds, then after termination
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of the loop, the loop invariant still holds, and in addition the negation of
the loop condition holds7.

In general, such a loop invariant cannot be found automatically. Instead
the user is supposed to specify it (nevertheless, for simple loops ESC/Java
can make some good guesses). Specifying a loop invariant basically gives
rise to three proof obligations:

• the precondition of the method has to be sufficient to guarantee that
when the loop starts, the loop invariant holds, e.g., if the loop is
preceded by a statement S1, then P ⇒ wp(S1, I) has to hold;

• the loop body has to preserve the loop invariant, thus c∧I ⇒ wp(S, I);

• ¬c ∧ I have to imply the weakest precondition of the code after the
loop body and the postcondition of the method, i.e., if the loop is
followed by a statement S2, then ¬c ∧ I ⇒ wp(S2, Q) has to hold.

Figure 5.4 shows two examples of non-trivial loop invariants. The first
method computes n3 without actually using the power function. Its loop
invariant describes the intermediate values for all local variables. The second
method checks whether a given value occurs in an array. The loop invariant
expresses the property that holds for all elements in the array that have
been examined so far.

5.6 Termination

Finally, static checking can also be used to prove termination of methods.
One could consider this as a simple liveness property, and thus this is com-
pletely out of reach for a run-time assertion checker. In Section 2.2 we
have discussed that methods could be specified with a normal_behavior

keyword, implicitly saying that the method would have to terminate.

For straightline code without loops, proving termination is obvious. How-
ever, for code with loops, again the user has to provide some information.
Above we saw that a variant of Hoare logic exists, defining total correctness.
For most statements, the rules for partial correctness and total correctness
are identical. However, for loops the total correctness rule is different. In
addition to the invariant I, it also uses a variant expression V . This variant
expression has to be well-founded, i.e., it cannot decrease forever. For every

7In fact, to reason about Java, variations of this rule exist, allowing to reason about
loops that terminate abruptly e.g., because of an exception or a return statement.
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iteration of the loop, one has to show that the variant is strictly decreas-
ing (for this end, in the rule a logical variable v is used to remember the
old value of the variant). Since the variant is a well-founded expression, it
cannot decrease forever, and thus the loop has to terminate.

[c ∧ I ∧ V = v]S[I ∧ V < v]

[I]while c do S[¬c ∧ I]

As for the invariant, the loop variant in general cannot be found automat-
ically, it has to be specified explicitly by the annotater/developer (although
there are also several tools available that can suggest variants).

Consider again the loops in Figure 5.4. If we wish to show in addition
that the loop terminates, we have to add a variant to it, using the JML
decreasing keyword. For third_power an appropriate choice would be:
decreasing n - k;, for search, decreasing a.length - i; would work.

A similar approach as for loops is also used to reason about correctness
and termination of recursive calls.
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package chapter5;

public class LoopExamples {

/*@ requires n >= 0;

ensures \result == n * n * n;

*/

public int third_power(int n) {

int u = 0;

int v= 1;

int w = 6;

int k = 0;

//@ loop_invariant 0 <= k && k <= n;

//@ loop_invariant u == k * k * k;

//@ loop_invariant v == 3 * k * k + 3 * k + 1;

//@ loop_invariant w == 6 * (k + 1);

while (k < n) {

u = u + v;

v = v + w;

w = w + 6;

k = k + 1;

}

return u;

}

/*@ requires a != null;

ensures \result ==

(\exists int i; 0 <=i && i < a.length; a[i] == val);

*/

public boolean search(int [] a, int val) {

boolean found = false;

int i = 0;

/*@ loop_invariant

found == (\exists int j; 0 <= j && j < i; a[j] == val);

loop_invariant 0 <= i && i <= a.length;

loop_invariant a != null;

*/

while (i < a.length & !found) {

if (a[i] == val) {found = true;}

i++;

}

return found;

}

}

Figure 5.4: Loops with non-trivial loop invariants
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[6] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass – Java
with Assertions. In K. Havelund and G. R. su, editors, ENTCS, volume
55(2). Elsevier Publishing, 2001.

[7] G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, edi-
tors. Proceedings, Construction and Analysis of Safe, Secure and Inter-
operable Smart devices (CASSIS’04) Workshop, volume 3362 of Lecture
Notes in Computer Science. Springer-Verlag, 2005.

[8] G. Barthe, M. Pavlova, and G. Schneider. Precise analysis of memory
consumption using program logics. In Software Engineering and Formal
Methods, pages 86–95. IEEE Press, 2005.

57



58 BIBLIOGRAPHY
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